Low Noise Measurement Pre-Amplifier – 0.8nV/rt(Hz) LNA

This post will discuss a Low-Noise-Amplifier (LNA) for measurement of voltage regulators and other low noise low impedance sources. The design target had a few requirements, including:
– High gain (X1000/60dB as a minimum)
– High BW (1MHz)
– Low input referred voltage noise (<1nV/rt(Hz))

There are multiple approaches to designing such an instrument, and each designer has his own preferences based on his requirements and experience. I chose to design something that would fit my needs, which would also be discussed in this post.

Continue reading “Low Noise Measurement Pre-Amplifier – 0.8nV/rt(Hz) LNA”

EMU 0404 USB – Op-Amps Replacement Worth the Effort?

As I’ve posted in the past, my audio measurement setup is built around an EMU 0404 USB sound card. Its a fairly old device, its driver is old too. On the other hand, you can get it for almost nothing on eBay, and it has excellent measurable performance for the price. It is good for 0.001% THD at 1KHz without any modifications. With some help, its front-end is good enough for even 0.0001% THD measurement, as I’ve showed in this post. However, as you increase the frequency, the distortion will grow, as you’d expect. Additionally, if you look inside the box, there are quite a few parts there that make you wonder “how good can it be if I put a few extra $ into it?”. That’s exactly what I wanted to find out. I didn’t want to spend much time, nor funds, as I was happy with the performance I was getting. This was mostly for fun, and the results are shown in this post.

Continue reading “EMU 0404 USB – Op-Amps Replacement Worth the Effort?”

Quick and Simple Notch Filter for THD Measurements

One important tool that can help extend the capabilities of a distortion measurement setup is a notch filter. The logic behind it is fairly simple, if we are only interested in the distortion components, why should we even feed the fundamental frequency into the measurement setup? By eliminating it (or simply attenuating it sufficiently), we can reduce the harmonic distortion generated by the test equipment as a result of the large tone, effectively extending its capabilities for harmonic distortion measurement.  There is obviously more than one way of doing it, and in this post I will only describe one way  which was a good match for my needs.

I wanted to create a small box that would implement this function for my needs to allow me to extend further the THD measurement setup I have. In its simplest form, using the EMU 0404USB I’m able to measure THD of ~0.001% at 1KHz. By using an external low distortion 1KHz oscillator I was able to extend this down to ~0.0004%. However, I was looking for a way to get down to 0.0001% to allow measurement of high quality DAC’s. Since I know the external oscillator I use has sufficiently low distortion to support these figures, I needed a way to reduce the distortion caused by the input stage and ADC of the EMU. I have considered trying to hack the EMU and improve its input stage, but I expect the ADC will limit me before I can reach the target performance. Therefore I went with the option of removing the fundamental frequency from the signal before feeding it into the EMU, to reduce the distortion it generates.

Continue reading “Quick and Simple Notch Filter for THD Measurements”

Low THD Oscillator Power-Supply, and PCB’s as Case Panels

As you’d expect from someone who’s hobby’s include both audio/stereo and electronics, I try to measure and quantify things even when they are related to audio gear. While I will prefer to tune things by ear at the final step, measurement gives significant insight to some problems, in a very accurate way, in short amounts of time. One of the tools I would love to have for this is a very accurate audio analyzer, like one of the Audio-Precision offerings. What I’d like to have is the ability to measure parameters like harmonic distortion down to very low levels of distortion. However, most of these instruments are so expensive, even when bought used, that I gave up on finding a good one of these very long ago. Thankfully, nowadays, you can get very good results with much cheaper PC based gear. This post will describe one of the steps I’m taking to try and extend my ability to measure these parameters with my laptop, keeping in mind this is aimed at hobby use and must therefore be reasonably priced. I will start this post off with a bit of an introduction, but will dedicate most of it the the low THD oscillator and its power-supply.

Continue reading “Low THD Oscillator Power-Supply, and PCB’s as Case Panels”